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Abstract

This paper deals with the existence and uniqueness of solutions to two-point boundary value
problems for first-order discrete systems. The approach is based on the fixed point theorems
of Perov and Schauder. The novelty of this paper is that this approach is combined with the
technique that uses convergent to zero matrices and vector norms for treating discrete systems.
Two examples are presented to illustrate the theory.
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1 Introduction

Let f, g : [0, N ]× R2 → R be continuous and consider the discrete boundary value problem

∆xi
h

= f (ti, xi, yi) , i = 0, 1, . . . , n− 1,

∆yi
h

= g (ti, xi, yi) , i = 0, 1, . . . , n− 1, (1.1)

ux0 + vxn = w, u+ v 6= 0,

uy0 + vyn = w, u+ v 6= 0, (1.2)

where h = N
n < N ; the grid points are denoted by ti = ih for ∆xi = xi+1 − xi for i =

0, 1, . . . , n.;u, v, w, u, v, w are constants.
The modeling and simulation of some nonlinear problems have aided the fast development

of boundary value problem theory. The boundary value problems for differential and difference
equations were extensively discussed in the literature by various methods (see, for example [1], [4],
[5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [21], [23] and [24]).

It is of interest to note that the approach of vector-valued metrics and convergent to zero
matrices for differential equations have been intensively studied in literature. In [5], Bolojan et
al. used the approach of vector-valued metrics and convergent to zero matrices to establish the
existence of solution for the initial value problems of nonlinear first order differential systems with
nonlinear nonlocal boundary conditions of functional type. The existence results were obtained
by applying the fixed point concepts of Perov, Schauder, and Leray-Schauder. Then Berrezoug et
al. in [4] used the fixed point approach in vector Banach spaces to study a system of impulsive
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differential equations. The main results were proved by using Perovs and Krasnoselskii fixed point
type theorems in generalized Banach spaces.

However, very little work has been done for the existence of solutions in Generalized Banach
spaces for difference equations. Recently in [8], the authors used the idea of fixed point theory in
generalized Banach spaces to prove the existence and uniqueness of solutions for some classes of
semilinear systems of difference equations with initial and boundary conditions.

Motivated by the above work, we present a vector version of the fixed point theorem for treating
systems of discrete problem (1.1), (1.2). By applying the technique vector-valued metrics and
matrices convergent to zero as in [5], we obtain results that extend previous work in the area of
discrete boundary value problems [7], [18], [22] and [23]. The existence result is given by means of
Schauder’s fixed point theorem and the existence and uniqueness of solution is obtained via a fixed
point theorem due to Perov. Two examples are presented to illustrate the theory.

2 Preliminary results

In this section, we introduce some notations, definition and basic results which are used throughout
this paper.

Definition 2.1. By a vector-valued metric on X we mean a mapping d : X×X → Rn+1 such that

(i) d (u, v) ≥ 0 for all u, v ∈ X and if d (u, v) = 0 then u = v;
(ii) d (u, v) = d (v, u) for all u, v ∈ X;
(iii) d (u, v) = d (u,w) + d (w, v) for all u, v, w ∈ X

Here, x,y ∈ Rn+1,x = (x0, x1, . . . , xn) ,y = (y0, y1, . . . , yn), by x ≤ y we mean xi ≤ yi for
i = 0, 1, . . . , n. We call the pair (X, d) a generalized metric space with

d(x,y) :=


d0(x,y)

.

.

.
dn(x,y)

 ,

where di, i = 0, 1, . . . , n is a metric on X. Notice that d is generalized metric space on X if and only
if di, i = 0, 1, . . . , n are metrics on X. For such a space convergence and completeness are similar
to those in usual metrics spaces.

Definition 2.2. A square matrix M with nonnegative elements is said to be convergent to zero if

Mk → 0 as k →∞.

The property of being convergent to zero is equivalent to each of the following conditions from
the characterisation lemma below (see [2], [3], [19], [20], [25], [26]).

Lemma 2.3. Let M be a square matrix of nonnegative numbers. The following statements are
equivalent:

(i) M is a matrix convergent to zero;
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(ii) I −M is nonsingular and (I −M)
−1

= I + M + M2 + ... (where I stands for the unit
matrix of the same order as M);

(iii) the eigenvalues of M are located inside the unit disc of the complex plane;

(iv) I −M is nonsingular and (I −M)
−1

has nonnegative elements.

Note that, according to the equivalence of the statements (i) and (iv), a matrix M is convergent
to zero if and only if the matrix I −M is inverse-positive.

Definition 2.4. Let (X, d) be a generalized metric space. An operator N : X → X is said to be
contractive if there exists a convergent to zero matrix M such that

d(N(x), N(y)) ≤Md(x, y),∀x, y ∈ X. (2.1)

Theorem 2.5 (Schauder). Let X be a Banach space, D ⊂ X a nonempty closed bounded convex
set and T : D → D a completely continuous operator (i.e. T is continuous and T (D) is relatively
compact). Then T has at least one fixed point.

3 Existence results

In this section, first we show that the existence of solutions to the problems (1.1), (1.2) follows
from Perov’s fixed point theorem in case that the nonlinearity f, g and the functionals ai, bi, i = 1, 2
satisfy Lipschitz conditions.

Let X := Rn+1. We consider the vector-valued norm

‖ (x,y) ‖=
[
| x |
| y |

]
, (3.1)

for (x,y) ∈ X ×X. Also | x |= maxi=0,...,n | xi | for x ∈ X, and define

d(x,y) := ‖x− y‖ for all x,y ∈ X.

The pair (X, d) is called a generalized Banach space.
We can rewrite the problem (1.1), (1.2) as a system of summation equation of the form

xi = h

n−1∑
j=0

G1 (i, j) f (tj , xj , yj) +
w

u+ v
, i = 0, 1, . . . , n,

yi = h

n−1∑
j=0

G2 (i, j) g (tj , xj , yj) +
w

u+ v
, i = 0, 1, . . . , n,

(3.2)

where

G1 (i, j) =


u

u+ v
for 0 ≤ j ≤ i− 1,

− v

u+ v
for i ≤ j ≤ n− 1,

and

G2 (i, j) =


u

u+ v
for 0 ≤ j ≤ i− 1,

− v

u+ v
for i ≤ j ≤ n− 1.
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It is obvious that the system (3.2) can be viewed as a fixed point problem

T(x,y) = (x,y),

for all (x,y) ∈ X ×X so that

T(x,y) =

(
T1(x,y)0, . . . , T1(x,y)n
T2(x,y)0, . . . , T2(x,yn

)
.

We define the operator T in a componentwise based on the form of (3.2), where

T1(x,y)i := h

n−1∑
j=0

G1 (i, j) f (tj , xj , yj) +
w

u+ v
, i = 0, 1, . . . , n,

T2(x,y)i = h

n−1∑
j=0

G2 (i, j) g (tj , xj , yj) +
w

u+ v
, i = 0, 1, . . . , n,

for all (x,y) ∈ X ×X. Define
Sl = max | Gl (i, j) |

for l = 1, 2.

Theorem 3.1. Let f, g : [0, N ] × R2 → R be continuous and u + v 6= 0, u + v 6= 0. There are
constants a1, a2, b1, b2 > 0 such that

|f (t, x, y)− f (t, x, y) | ≤ a1|x− x|+ b1|y − y|, (3.3)

|g (t, x, y)− g (t, x, y) | ≤ a2|x− x|+ b2|y − y|, (3.4)

for all t ∈ [0, N ] , (x, y) ∈ R2. In addition assume that the matrix

M =

[
hnS1a1 hnS1b1
hnS2a2 hnS2b2

]
(3.5)

is convergent to zero. Then the problem (1.1), (1.2) has a unique solution.

We shall apply Perov′s fixed point theorem to the problem (1.1), (1.2).

Proof. Define the operator
T = (T1, T2) : X ×X → X ×X,

where T1, T2 are given by

T1(x,y)i := h

n−1∑
j=0

G1 (i, j) f (tj , xj , yj) +
w

u+ v
, i = 0, 1, . . . , n,

T2(x,y)i = h

n−1∑
j=0

G2 (i, j) g (tj , xj , yj) +
w

u+ v
, i = 0, 1, . . . , n,
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for all (x, y) ∈ X ×X.
We prove that T is contractive with respect to the convergent to zero matrix M , more exactly

that

‖T(x,y)−T (x,y) ‖ ≤
(
hnS1a1 hnS1b1
hnS2a2 hnS2b2

)[
| x− x |
| y− y |

]
.

We have

|T1 (x,y)i − T1 (x,y)i | ≤ h
n−1∑
j=0

|G1 (i, j)|
∣∣f (tj , xj , yj)− f

(
tj , xj , yj

)∣∣
≤ h

n−1∑
j=0

|G1 (i, j)|
[
a1 | xj − xj | +b1 | yj − yj |

]
≤ hnS1 [a1 | x− x | +b1 | y− y |] (3.6)

for i = 0, 1, . . . , n. Similarly we have

|T2 (x,y)i − T2 (x,y)i | ≤ h
n−1∑
j=0

|G2 (i, j)|
∣∣g (tj , xj , yj)− g

(
tj , xj , yj

)∣∣
≤ h

n−1∑
j=0

|G2 (i, j)|
[
a2 | xj − xj | +b2 | yj − yj |

]
≤ hnS2 [a2 | x− x | +b2 | y− y |] ,

(3.7)

for i = 0, 1, . . . , n. Both inequalities (3.6) and (3.7) can be put together and be written equivalently
as [

|T1 (x,y)i − T1 (x,y)i |
|T2 (x,y)i − T2 (x,y)i |

]
≤
(
hnS1a1 hnS1b1
hnS2a2 hnS2b2

)[
| x− x |
| y− y |

]
or using the vector-valued norm

‖T(x,y)−T (x,y) ‖ ≤M
[
| x− x |
| y− y |

]
with

M =

(
hnS1a1 hnS1b1
hnS2a2 hnS2b2

)
.

The result follows now from Perov′s fixed point theorem. q.e.d.

Next, we give an application of Scahuder′s fixed point theorem. We show that the existence of
solutions to the problem (1.1), (1.2) follows from Scahuder′s fixed point theorem in case f, g satisfy
a relaxed growth condition.
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Theorem 3.2. Let f, g : [0, N ]×R2 → R be continuous. There are constants a1, a2, b1, b2 > 0 such
that

|f (t, x, y) | ≤ a1|x|+ b1|y|+ k1, (3.8)

|g (t, x, y) | ≤ a2|x|+ b2|y|+ k2, (3.9)

for all t ∈ [0, N ], (x, y) ∈ R2. If the matrix M is given in (3.5) is convergent to zero, then the
problem (1.1), (1.2) has at least one solution.

Proof. In order to apply Schauder’s fixed point theorem, we look for a nonempty, bounded, closed
and convex subset B of X ×X so that T (B) ⊂ B. According to (3.8) and (3.9), we obtain

| T1 (x,y)i | =

∣∣∣∣∣∣h
n−1∑
j=0

G1 (i, j) f (tj , xj , yj) +
w

u+ v

∣∣∣∣∣∣
≤ hnS1 [a1|xj |+ b1|yj |+ k1] + | w

u+ v
|

≤ hnS1 [a1|x|+ b1|y|] + hnS1k1+ | w

u+ v
|

for i = 0, 1 . . . , n. Similarly we have

| T2 (x,y)i | =

∣∣∣∣∣∣h
n−1∑
j=0

G2 (i, j) g (tj , xj , yj) +
w

u+ v

∣∣∣∣∣∣
≤ hnS2 [a2|xj |+ b2|yj |+ k2] + | w

u+ v
|

≤ hnS2 [a2|x|+ b2|y|] + hnS2k2+ | w

u+ v
| .

[
|T1 (x,y)i |
|T2 (x, y)i |

]
≤M

[
| x |
| y |

]
+

[
c0
C0

]
,

where M is given by (3.5) and is assumed to be convergent to zero, c0 = hnS1k1+ | w

u+ v
|

and C0 = hnS2k2+ | w

u+ v
| . Next for |x| ≤ R1 and |y| ≤ R2, we show | T1 (x,y)i | ≤ R1,

| T2 (x,y)i | ≤ R2 for i = 0, . . . , n. To this end it is sufficient that

M

[
R1

R2

]
+

[
c0
C0

]
≤
[
R1

R2

]
,

whence

(1−M)
−1

[
c0
C0

]
≤
[
R1

R2

]
.



First-order discrete systems 243

Notice that 1 −M is invertible and its inverse (1−M)
−1

has nonnegative element since M is
convergent to zero. If B = B1 ×B2, where

B1 = {x ∈ X : |x| ≤ R1}

and
B2 = {y ∈ X :| y| ≤ R2}

then T (B) ⊂ B and Schauders fixed point theorem can be applied. q.e.d.

4 Some examples

In what follows, we give two examples that illustrate our theory.

Example 4.1. Consider the special case of (1.1), (1.2) with:

f(t, x, y) =
1

2
sinx+

1

4
y + t,

g(t, x, y) = cos

(
1

4
x+

2

3
y

)
+ t,

a1 = 1
2 , b1 = 1

4 , a2 = 1
4 , b2 = 2

3 , u = 40, v = 60, u = 30 and v = 70, w = 25, w = 130
2 , N = 1, the

step size h = 0.5
n where n = 10. We have

M =

[
3
20

3
40

3
44

2
11

]
. (4.1)

Since the eigenvalues of M are λ1 = 0.24, λ2 = 0.09, the matrix (4.1) is convergent to zero if
|λ1| < 1 and |λ2| < 1. The associated discrete boundary value problem satisfies all conditions of
Theorem 3.1 and thus has a unique solution.

Example 4.2. Consider the special case of (1.1), (1.2) with:

f(t, x, y) = a sinx+
1

2
cos y + t,

g(t, x, y) =
1

2
sinx+ ay,

a1 = |a|, b1 = 1
2 , a2 = 1

2 , b2 = |a|, u = 1, v = 2, u = 4 and v = 2, w = 25, w = 30, N = 1, the step
size h = 0.5

n where n = 10. We have

M =

[
|a|
3

1
6

1
6

|a|
3

]
. (4.2)

Since the eigenvalues of M are λ1 = |a|
3 −

1
6 , λ2 = |a|

3 + 1
6 , the matrix (4.2) is convergent to

zero if |λ1| < 1 and |λ2| < 1. It is also known that a matrix of this type is convergent to zero if
|a|
3 + 1

6 < 1 (see [20]). Therefore, if |a| < 5
2 , the matrix (4.2) is convergent to zero and thus from

Theorem 3.1 the associated discrete boundary value problem has a unique solution.
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